image_classifier/image_classifier/image_classifier.py

191 lines
8 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
#
# This script is licensed under GNU GPL version 2.0 or above
# (c) 2021 Antonio J. Delgado
#
import sys
import os
import logging
import json
import click
import click_config_file
from logging.handlers import SysLogHandler
import face_recognition
import exif
from iptcinfo3 import IPTCInfo
import PIL
class CustomFormatter(logging.Formatter):
"""Logging colored formatter, adapted from https://stackoverflow.com/a/56944256/3638629"""
grey = '\x1b[38;21m'
blue = '\x1b[38;5;39m'
yellow = '\x1b[38;5;226m'
red = '\x1b[38;5;196m'
bold_red = '\x1b[31;1m'
reset = '\x1b[0m'
def __init__(self, fmt):
super().__init__()
self.fmt = fmt
self.FORMATS = {
logging.DEBUG: self.grey + self.fmt + self.reset,
logging.INFO: self.blue + self.fmt + self.reset,
logging.WARNING: self.yellow + self.fmt + self.reset,
logging.ERROR: self.red + self.fmt + self.reset,
logging.CRITICAL: self.bold_red + self.fmt + self.reset
}
def format(self, record):
log_fmt = self.FORMATS.get(record.levelno)
formatter = logging.Formatter(log_fmt)
return formatter.format(record)
class image_classifier:
def __init__(self, debug_level, log_file, faces_directory, directory):
''' Initial function called when object is created '''
self.debug_level = debug_level
if log_file is None:
log_file = os.path.join(os.environ.get('HOME', os.environ.get('USERPROFILE', os.getcwd())), 'log', 'image_classifier.log')
self.log_file = log_file
self._init_log()
self.faces_directory = faces_directory
self.directory = directory
self.known_people = self.load_known_people()
if os.access(directory, os.R_OK):
with os.scandir(directory) as directory_item:
for entry in directory_item:
if not entry.name.startswith('.') and entry.is_file():
self.process_file(directory + os.sep + entry.name)
def process_file(self, file):
''' Process a file, find faces, add EXIF information and
move it to the folder of the day'''
self._log.debug(f"Processing file '{file}'...")
people = self.find_faces(file)
if people:
self._log.debug(f"Found {len(people)} known people in the image.")
self._log.debug(json.dumps(people, indent=2))
iptc_info = IPTCInfo(file, force=True)
print(iptc_info['keywords'])
with open(file, 'rb') as image_file:
self.exif_info = exif.Image(image_file)
if not self.exif_info.has_exif:
self._log.debug("No exif info in the image.")
else:
# for key in dir(self.exif_info):
# if not key.startswith("_"):
# sys.stdout.write(f"{key}: ")
# sys.stdout.write(f"{self.exif_info[key]}")
self.append_people_to_exif(people)
with open(file, 'wb') as new_image_file:
new_image_file.write(self.exif_info.get_file())
self._log.debug(f"Updated file '{file}'.")
# get date
self._log.debug(f"File time stamp: {self.exif_info.get('Image timestamp')} (type: {type(self.exif_info.get('Image timestamp'))})")
# move to destination
else:
self._log.debug("Doesn't seem to be an image.")
def append_people_to_exif(self, people):
if self.is_json(self.exif_info.get('user_comment')):
data = json.loads(self.exif_info['user_comment'])
if 'PeopleDetected' not in data:
data['PeopleDetected'] = list()
else:
data = dict()
if self.exif_info.get('user_comment'):
data["previous_user_comment"]=self.exif_info.get('user_comment')
data['PeopleDetected'] = list()
for person in people:
if person not in data['PeopleDetected']:
data['PeopleDetected'].append(person)
self._log.debug(f"New 'user_comment': {json.dumps(data, indent=2)}")
self.exif_info.set("user_comment", json.dumps(data))
def is_json(self, data):
try:
result = json.loads(data)
except TypeError:
return False
return True
def load_known_people(self):
known_people = list()
self._log.debug(f"Looking for known faces in directory '{self.faces_directory}'...")
if os.access(self.faces_directory, os.R_OK):
with os.scandir(self.faces_directory) as faces_items:
for entry in faces_items:
if not entry.name.startswith('.') and entry.is_file():
self._log.debug(f"Detecting known person in file '{entry.name}'...")
person = dict()
person['filename'] = face_recognition.load_image_file(self.faces_directory + os.sep + entry.name)
person['name'] = os.path.basename(os.path.splitext(self.faces_directory + os.sep + entry.name)[0])
person['encoding'] = face_recognition.face_encodings(person['filename'])[0]
known_people.append(person)
return known_people
def find_faces(self, file):
''' Find faces in an image/video file '''
people = list()
try:
image = face_recognition.load_image_file(file)
encodings = face_recognition.face_encodings(image)
self._log.debug(f"Found {len(encodings)} faces.")
for known_person in self.known_people:
for encoding in encodings:
if face_recognition.compare_faces([known_person['encoding']], encoding)[0]:
if known_person['name'] not in people:
people.append(known_person['name'])
except PIL.UnidentifiedImageError as error:
self._log.debug(f"File '{file}' don't seem to be an image.")
return False
return people
def _init_log(self):
''' Initialize log object '''
self._log = logging.getLogger("image_classifier")
self._log.setLevel(logging.DEBUG)
sysloghandler = SysLogHandler()
sysloghandler.setLevel(logging.DEBUG)
self._log.addHandler(sysloghandler)
streamhandler = logging.StreamHandler(sys.stdout)
streamhandler.setLevel(logging.getLevelName(self.debug_level))
#formatter = '%(asctime)s | %(levelname)8s | %(message)s'
formatter = '[%(levelname)s] %(message)s'
streamhandler.setFormatter(CustomFormatter(formatter))
self._log.addHandler(streamhandler)
if not os.path.exists(os.path.dirname(self.log_file)):
os.mkdir(os.path.dirname(self.log_file))
filehandler = logging.handlers.RotatingFileHandler(self.log_file, maxBytes=102400000)
# create formatter
formatter = logging.Formatter('%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
filehandler.setFormatter(formatter)
filehandler.setLevel(logging.DEBUG)
self._log.addHandler(filehandler)
return True
@click.command()
@click.option("--debug-level", "-d", default="INFO",
type=click.Choice(
["CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"],
case_sensitive=False,
), help='Set the debug level for the standard output.')
@click.option('--log-file', '-l', help="File to store all debug messages.")
@click.option("--faces-directory","-f", required=True, help="Folder containing the pictures that identify people. The filename would be used as the name for the person. Just one person per picture.")
@click.option("--directory","-d", required=True, help="Folder containing the pictures to classify.")
@click_config_file.configuration_option()
def __main__(debug_level, log_file, faces_directory, directory):
object = image_classifier(debug_level, log_file, faces_directory, directory)
if __name__ == "__main__":
__main__()